Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E)-3-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)prop-2-en-1one

Carlos A. Escobar, ${ }^{\text {a* }}$ Andrés Vega, ${ }^{\text {a }}$ Dieter Sicker ${ }^{\mathbf{b}}$ and Andrés Ibañez ${ }^{c}$
${ }^{\text {a }}$ Universidad Andres Bello, Departamento de Ciencias Químicas, Santiago, Chile, ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Leipzig, D-04103 Leipzig, Germany, and ${ }^{\text {c }}$ Laboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
Correspondence e-mail: cescobar@unab.cl

Received 12 August 2008; accepted 20 August 2008
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.064 ; \omega R$ factor $=0.139 ;$ data-to-parameter ratio $=12.8$.

The molecular conformation of the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$, is stabilized by a strong intramolecular hydrogen bond between the hydroxyl and carbonyl groups. The $\mathrm{C}=\mathrm{C}$ double bond displays an E configuration while the carbonyl group shows an S-cis configuration relative to the double bond. The dihedral angle between the two rings is $15.0(1)^{\circ}$.

Related literature

For related literature, see: Chu et al. (2004); Desiraju (2002); Fronczek et al. (1987); Radha Krishna et al. (2005); Rao et al. (2004); Shoja (1999); Subbiah Pandi et al. (2003); Usman et al. (2006); Wafo et al. (2005); Wallet et al. (1995); Wu et al. (2005).

Experimental

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
$c=13.0770(14) \AA$
$M_{r}=314.32$
Monoclinic, $P 2_{1} / c$
$a=4.8793$ (5) А
$b=24.283$ (3) A
$\beta=97.044$ (2) ${ }^{\circ}$
$V=1537.7(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$\mu=0.10 \mathrm{~mm}^{-1}$	$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$
$T=150(2) \mathrm{K}$	

$T=150(2) \mathrm{K}$

Data collection

Siemens SMART CCD area- 9482 measured reflections
detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064 \quad 212$ parameters
$w R\left(F^{2}\right)=0.139$
$S=1.03$
H -atom parameters constrained
2717 reflections
$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$

2717 independent reflections
1522 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 20-\mathrm{H} 20 \cdots \mathrm{O} 1$	0.84	1.77	$2.515(3)$	147

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

The authors gratefully acknowledge generous financial support from FONDECYT (grant No. 1080147) and Universidad Andres Bello (grant No. DI-UNAB-20-06/R).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2172).

References

Bruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, H.-W., Wu, H.-T. \& Lee, Y.-J. (2004). Tetrahedron, 60, 2647-2655.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Fronczek, F. R., Tanrisever, N. \& Fischer, N. H. (1987). Acta Cryst. C43, 158160.

Radha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. \& Puranik, V. G. (2005). Acta Cryst. E61, o1323-o1325.
Rao, Y. K., Fang, S.-H. \& Tzeng, Y.-M. (2004). Bioorg. Med. Chem. 12, 26792686.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shoja, M. (1999). Z. Kristallogr. 214, 235-240.
Subbiah Pandi, A., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. \& Bansal, M. C. (2003). Acta Cryst. C59, o302-o304.
Usman, H., Jalaluddin, M. N., Hakim, E. H., Syah, Y. M. \& Yamin, B. M. (2006). Acta Cryst. E62, o209-o211.

Wafo, P., Hussain, H., Kouam, S. F., Ngadjui, B. T., Flörke, U. \& Krohn, K. (2005). Acta Cryst. E61, o3017-o3019.

Wallet, J.-C., Molins, E. \& Miravitlles, C. (1995). Acta Cryst. C51, 123-125.
Wu, H., Xu, Z. \& Liang, Y.-M. (2005). Acta Cryst. E61, o1434-o1435.

supplementary materials

Acta Cryst. (2008). E64, o1834 [doi:10.1107/S1600536808026949]

(E)-3-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)prop-2-en-1-one

C. A. Escobar, A. Vega, D. Sicker and A. Ibañez

Comment

From the synthetic point of view, 2'-hydroxy acetophenones are the choice precursors for the synthesis of 2'-hydroxychalcones trough the Claisen-Schmidt condensation with an aldehyde. Under such basic conditions (i.e. KOH), a proton is removed to form the enolate anion at the acetyl moiety. Interestingly, in such a condition the 2^{\prime}-hydroxyl proton remains unaffected by the base. Deprotonation of this 2'-hydroxy group occurs only under the action of a strong base (i.e. hydride) if the methyl ketone's protons in the acetophenone are blocked, as for instance, in the form of a Chalcone.

This behavior is attributed to the intense H-bonding interaction between the 2'-hydroxyl proton and the acetyl moiety of the acetophenone, which is preserved in the derivatives like 2^{\prime}-hydroxy-chalcones. This structural characteristic of the title compound has been recognized to play a key role in its biological activity and seems to be the basis to its potential as an anti carcinogenic agent. In fact 2 '-hydroxychalcones have been found to be cytotoxic against human tumor cells. In the particular case of the title compound this was found to be a potent cytotoxic agent against human lymphocytic and also to monocytic cell linies (Rao et al., 2004). It has been also proved to be a potent antiproliferative agent against tumor cell lines without being more cytotoxic to normal cells (Rao et al., 2004).

The structure of the title compound displays two phenyl rings connected through a three carbon propenone moiety. As shown in Figure 1, one phenyl ring is substituted at positions 2 and 3 with methoxy groups, while the other is substituted at positions 2^{\prime} and 4^{\prime} with one hydroxy and one methoxy group respectively.

The hydroxy substitution at 2^{\prime} produces a six-membered intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the keto group (Desiraju, 2002). This hydrogen bond is present with almost no exception through the series of compounds with this core, startintg with 2'-Hydroxy-4-methylchalcone (Shoja, 1999). This intramolecular bond leads the carbonyl group to display an S-cis configuration in relation to the double bond. The double bond displays an E configuration.

The molecule is significantly planar, as reflected in the values determined for the torsion angles. This is also true for molecules substituted with methoxy and/or hydroxy groups at different points of both phenyl sub-systems (Fronczek et al., 1987; Wallet et al., 1995; Subbiah Pandi et al., 2003; Chu et al., 2004; Wafo et al., 2005; Radha Krishna et al., 2005; Wu et al., 2005; Usman et al., 2006).

The packing shows no significant intermolecular hydrogen bonding.

Experimental

The title compound was prepared as follows: A solution of the 2,3-dimethoxybenzaldehyde, (7.34 mmol in ethanol, 20 ml) was added dropwise to a mixture of 2^{\prime}-hydroxy- 4 '-methoxyacetophenone (7.34 mmol , in ethanol, 20 ml) and potassium hydroxide (2 g in 10 ml distilled water) with stirring. The mixture was allowed to react overnight, was then diluted with distilled water $(200 \mathrm{ml})$, neutralized with hydrochloric acid and extracted with ethyl acetate ($4 x 50 \mathrm{ml}$). The combined

supplementary materials

organic phases were concentrated in a rotatory evaporator, redissolved in ethanol and allowed to crystallize, as yellow crystals (31\%); mp 98-101 ${ }^{\circ} \mathrm{C}$.

Refinement

The hydrogen atoms positions were calculated after each cycle of refinement with SHELXL (Bruker,1999) using a riding model for each structure, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.95 to $0.98 \AA . U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.5 U_{\text {eq }}$ of the parent carbon atom for methyl groups and $1.2 U_{\text {eq }}$ for the others. The exception were the hydroxyl hydrogen atom which were located in the Fourier and then refined with the $\mathrm{O}-\mathrm{H}$ distance constrained to be $0.84 \AA$ and the $U_{\text {eq }}$ free to refine.

Figures

Fig. 1. Molecular structure diagramas for I showing numbering scheme. Displacement ellipsoids are at 33% probability level and H atoms are shown as spheres of arbitrary radii.

(E)-3-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)prop-2-en-1-one

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
$M_{r}=314.32$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=4.8793$ (5) \AA
$b=24.283$ (3) \AA
$c=13.0770(14) \AA$
$\beta=97.044$ (2) ${ }^{\circ}$
$V=1537.7(3) \AA^{3}$
$Z=4$

Data collection

Siemens SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=150(2) \mathrm{K}$
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$
9482 measured reflections
$F_{000}=664$
$D_{\mathrm{x}}=1.358 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 98-101 oC K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 935 reflections
$\theta=3.0-19.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, orange
$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$

2717 independent reflections
1522 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=1.8^{\circ}$
$h=-5 \rightarrow 5$
$k=-28 \rightarrow 28$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$

$$
w R\left(F^{2}\right)=0.139
$$

$S=1.03$
2717 reflections
212 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0553 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Experimental. 0.3° between frames and 30 secs exposure (per frame)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C100	$0.5970(6)$	$0.41587(14)$	$0.7398(2)$	$0.0353(8)$
O1	$0.6194(4)$	$0.45867(9)$	$0.68878(17)$	$0.0458(6)$
C200	$0.3714(6)$	$0.37731(13)$	$0.7078(2)$	$0.0353(8)$
H200	0.3422	0.3473	0.7518	0.042^{*}
C300	$0.2072(6)$	$0.38252(12)$	$0.6203(2)$	$0.0375(8)$
H300	0.2417	0.4132	0.5787	0.045^{*}
C1	$-0.0221(6)$	$0.34652(12)$	$0.5798(2)$	$0.0334(8)$
C2	$-0.1667(6)$	$0.35684(13)$	$0.4845(2)$	$0.0330(8)$
O2	$-0.0892(4)$	$0.40002(9)$	$0.42551(16)$	$0.0438(6)$
C20	$-0.2738(7)$	$0.44601(13)$	$0.4198(3)$	$0.0514(10)$
H20A	-0.4614	0.4336	0.3951	0.077^{*}
H20B	-0.2152	0.4735	0.3720	0.077^{*}
H20C	-0.2713	0.4625	0.4883	0.077^{*}
C3	$-0.3817(6)$	$0.32244(13)$	$0.4428(2)$	$0.0373(8)$
O3	$-0.5036(5)$	$0.33541(9)$	$0.34667(17)$	$0.0504(7)$
C30	$-0.7260(7)$	$0.30177(15)$	$0.3026(3)$	$0.0552(10)$
H30A	-0.6599	0.2640	0.2951	0.083^{*}

supplementary materials

H30B	-0.7987	0.3163	0.2347	0.083^{*}
H30C	-0.8726	0.3018	0.3475	0.083^{*}
C4	$-0.4506(6)$	$0.27696(13)$	$0.4990(3)$	$0.0409(9)$
H4	-0.5951	0.2530	0.4715	0.049^{*}
C5	$-0.3078(6)$	$0.26662(13)$	$0.5953(3)$	$0.0397(8)$
H5	-0.3561	0.2357	0.6339	0.048^{*}
C6	$-0.0971(6)$	$0.30068(13)$	$0.6354(3)$	$0.0386(8)$
H6	-0.0009	0.2931	0.7015	0.046^{*}
C1' $^{\prime}$	$0.7965(6)$	$0.40449(13)$	$0.8300(2)$	$0.0314(7)$
C6' $^{\prime}$	$0.8088(7)$	$0.35443(13)$	$0.8848(2)$	$0.0381(8)$
H6' $^{\prime}$	0.6777	0.3265	0.8635	0.046^{*}
C5' $^{\prime}$	$1.0022(6)$	$0.34452(13)$	$0.9674(2)$	$0.0387(8)$
H5' $^{\prime}$	1.0067	0.3100	1.0018	0.046^{*}
C4' $^{\prime}$	$1.1930(6)$	$0.38540(14)$	$1.0010(2)$	$0.0377(8)$
O4	$1.3722(4)$	$0.37200(9)$	$1.08503(16)$	$0.0454(6)$
C40	$1.5663(6)$	$0.41353(14)$	$1.1273(3)$	$0.0490(9)$
H40A 2	1.6879	0.4235	1.0760	0.074^{*}
H40B	1.6772	0.3990	1.1890	0.074^{*}
H40C	1.4652	0.4462	1.1458	0.074^{*}
C3'	$1.1901(6)$	$0.43537(13)$	$0.9511(2)$	$0.0362(8)$
H3'	1.3179	0.4634	0.9749	0.043^{*}
C2'	$0.9974(6)$	$0.44402(13)$	$0.8654(2)$	$0.0351(8)$
O20	$1.0090(4)$	$0.49305(9)$	$0.81665(18)$	$0.0453(6)$
H20	0.8938	0.4933	0.7634	$0.046(11)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C100	$0.0270(18)$	$0.040(2)$	$0.0400(19)$	$0.0031(15)$	$0.0089(15)$	$-0.0042(16)$
O1	$0.0407(14)$	$0.0398(15)$	$0.0549(15)$	$-0.0023(11)$	$-0.0017(11)$	$0.0059(12)$
C200	$0.0277(18)$	$0.037(2)$	$0.0410(19)$	$-0.0003(15)$	$0.0057(15)$	$-0.0033(16)$
C300	$0.0309(19)$	$0.035(2)$	$0.048(2)$	$0.0034(15)$	$0.0100(16)$	$-0.0035(16)$
C1	$0.0270(18)$	$0.0325(19)$	$0.0414(19)$	$0.0058(15)$	$0.0070(15)$	$-0.0060(15)$
C2	$0.0237(18)$	$0.0351(19)$	$0.041(2)$	$0.0032(14)$	$0.0085(15)$	$-0.0037(16)$
O2	$0.0394(14)$	$0.0424(14)$	$0.0498(14)$	$-0.0008(12)$	$0.0067(11)$	$0.0088(12)$
C20	$0.054(2)$	$0.038(2)$	$0.061(2)$	$0.0044(18)$	$0.0015(19)$	$0.0061(18)$
C3	$0.0296(19)$	$0.045(2)$	$0.037(2)$	$0.0013(16)$	$0.0043(16)$	$-0.0064(16)$
O3	$0.0408(14)$	$0.0594(17)$	$0.0487(15)$	$-0.0070(12)$	$-0.0038(12)$	$-0.0063(13)$
C30	$0.040(2)$	$0.067(3)$	$0.057(2)$	$-0.009(2)$	$-0.0025(18)$	$-0.021(2)$
C4	$0.033(2)$	$0.041(2)$	$0.051(2)$	$-0.0035(16)$	$0.0113(17)$	$-0.0148(17)$
C5	$0.0344(19)$	$0.033(2)$	$0.053(2)$	$0.0007(16)$	$0.0106(17)$	$-0.0048(16)$
C6	$0.033(2)$	$0.0360(19)$	$0.047(2)$	$0.0051(16)$	$0.0060(16)$	$0.0003(17)$
C1'	$0.0231(17)$	$0.039(2)$	$0.0342(18)$	$-0.0007(15)$	$0.0100(14)$	$-0.0062(15)$
C6'	$0.0313(19)$	$0.039(2)$	$0.046(2)$	$-0.0031(16)$	$0.0104(17)$	$-0.0017(16)$
C5'	$0.0308(19)$	$0.043(2)$	$0.043(2)$	$-0.0002(16)$	$0.0077(16)$	$0.0013(17)$
C4'	$0.0278(19)$	$0.046(2)$	$0.0392(19)$	$0.0019(16)$	$0.0048(16)$	$-0.0034(17)$
O4	$0.0364(13)$	$0.0522(15)$	$0.0457(14)$	$-0.0042(12)$	$-0.0020(11)$	$0.0029(12)$
C40	$0.034(2)$	$0.060(2)$	$0.051(2)$	$-0.0078(18)$	$-0.0034(17)$	$-0.0113(19)$

sup-4

C3'	$0.0290(19)$	$0.040(2)$	$0.0400(19)$	$-0.0036(15)$	$0.0047(16)$	$-0.0064(17)$
C2'	$0.0337(19)$	$0.035(2)$	$0.039(2)$	$0.0008(15)$	$0.0133(16)$	$-0.0006(16)$
O20	$0.0411(14)$	$0.0414(15)$	$0.0516(16)$	$-0.0057(11)$	$-0.0021(13)$	$0.0028(11)$

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$

C100-O1	1.247 (4)	O4-C40	1.446 (3)
C100-C1'	1.461 (4)	C3'-C2'	1.388 (4)
C100-C200	1.467 (4)	$\mathrm{C} 2^{\prime}-\mathrm{O} 20$	1.355 (3)
C200-C300	1.319 (4)	C200-H200	0.9500
C300-C1	1.467 (4)	C300-H300	0.9500
C1-C2	1.377 (4)	C20-H20A	0.9800
C1-C6	1.403 (4)	C20-H20B	0.9800
C2-O2	1.382 (3)	C20-H20C	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	1.398 (4)	C30-H30A	0.9800
O2-C20	1.431 (4)	C30-H30B	0.9800
C3-O3	1.360 (4)	C30-H30C	0.9800
C3-C4	1.391 (4)	C4-H4	0.9500
O3-C30	1.423 (3)	C5-H5	0.9500
C4-C5	1.385 (4)	C6-H6	0.9500
C5-C6	1.372 (4)	C6'-H6'	0.9500
C1'-C6'	1.409 (4)	C5'-H5'	0.9500
C1'- \mathbf{C}^{\prime}	1.409 (4)	C40-H40A	0.9800
C6'-C5'	1.366 (4)	C40-H40B	0.9800
C5'-C4'	1.394 (4)	C40-H40C	0.9800
C4'-O4	1.357 (3)	C3'-H3'	0.9500
C4'-C3'	1.377 (4)	$\mathrm{O} 20-\mathrm{H} 20$	0.8400
O1-C100-C1'	119.7 (3)	C200-C300-H300	116.1
O1-C100-C200	119.4 (3)	C1-C300-H300	116.1
C1--C100-C200	120.8 (3)	$\mathrm{O} 2-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	109.5
C300-C200-C100	122.8 (3)	$\mathrm{O} 2-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B}$	109.5
$\mathrm{C} 200-\mathrm{C} 300-\mathrm{C} 1$	127.7 (3)	$\mathrm{H} 20 \mathrm{~A}-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B}$	109.5
C2-C1-C6	118.4 (3)	$\mathrm{O} 2-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5
C2-C1-C300	120.1 (3)	H20A-C20-H20C	109.5
C6-C1-C300	121.4 (3)	H20B-C20-H20C	109.5
C1-C2-O2	119.9 (3)	O3-C30-H30A	109.5
C1-C2-C3	121.4 (3)	O3-C30-H30B	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	118.7 (3)	H30A-C30-H30B	109.5
C2-O2-C20	114.1 (2)	O3-C30-H30C	109.5
O3-C3-C4	124.5 (3)	H30A-C30-H30C	109.5
O3-C3-C2	116.4 (3)	H30B-C30-H30C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.1 (3)	C5-C4-H4	120.1
C3-O3-C30	117.8 (3)	C3-C4-H4	120.1
C5-C4-C3	119.8 (3)	C6-C5-H5	119.7
C6-C5-C4	120.5 (3)	C4-C5-H5	119.7
C5-C6-C1	120.7 (3)	C5-C6-H6	119.6
C6'- $\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}$	115.9 (3)	C1-C6-H6	119.6
C6'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 100$	123.8 (3)	C5'-C6'-H6'	118.8
C2'-C1'-C100	120.3 (3)	C1'-C6'-H6'	118.8

C5'-C6'- ${ }^{\prime} 1^{\prime}$	122.4 (3)
C6'-C5'- ${ }^{\prime} 4^{\prime}$	119.6 (3)
O4-C4'- ${ }^{\text {C }}{ }^{\prime}$	124.3 (3)
O4-C4'- ${ }^{\text {c }}{ }^{\prime}$	115.0 (3)
C3'-C4'-C5'	120.7 (3)
C4'-O4-C40	118.0 (3)
C4'-C3'-C2'	118.9 (3)
O20-C2'- 3^{\prime}	116.7 (3)
O20-C2'- $\mathrm{C}^{\prime}{ }^{\prime}$	120.8 (3)
C3'-C2'-C1'	122.5 (3)
C300-C200-H200	118.6
C100-C200-H200	118.6
O1-C100-C200-C300	7.8 (5)
C1--C100-C200-C300	-171.6 (3)
C100-C200-C300-C1	179.4 (3)
C200-C300-C1-C2	-177.5 (3)
C200-C300-C1-C6	1.5 (5)
C6-C1-C2-O2	-176.8 (3)
C300-C1-C2-O2	2.3 (4)
C6-C1-C2-C3	-0.7 (4)
C300-C1-C2-C3	178.4 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 20$	-107.3 (3)
C3-C2-O2-C20	76.5 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	-177.7 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	-1.6 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.1 (4)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	176.2 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 30$	3.2 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 30$	-179.0 (3)
O3-C3-C4-C5	178.2 (3)
C2-C3-C4-C5	0.5 (4)
C3-C4-C5-C6	-0.6 (5)
C4-C5-C6-C1	0.0 (5)

C6'-C5'-H5'	120.2
C4'-C5'-H5'	120.2
O4-C40-H40A	109.5
O4-C40-H40B	109.5
H40A-C40-H40B	109.5
$\mathrm{O} 4-\mathrm{C} 40-\mathrm{H} 40 \mathrm{C}$	109.5
H40A - C40-H40C	109.5
H40B-C40-H40C	109.5
C4'-C3'-H3'	120.6
C2'-C3'-H3'	120.6
C2'-O20-H20	109.5
C2-C1-C6-C5	0.6 (4)
C300-C1-C6-C5	-178.4 (3)
O1-C100- Cl^{\prime} - $\mathrm{C} 6^{\prime}$	-171.9 (3)
C200-C100-C1'-C6'	7.5 (4)
$\mathrm{O} 1-\mathrm{C} 100-\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}$	6.2 (4)
C200-C100-C1'- \mathbf{C}^{\prime}	-174.4 (3)
C2'- $1^{\prime}{ }^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 5{ }^{\prime}$	0.2 (4)
C100-C1'-C6'-C5'	178.4 (3)
C1'-C6 - ${ }^{\text {C }}{ }^{\prime}$ - ${ }^{\text {C } 4}$	1.2 (4)
C6'-C5'-C4'-O4	178.5 (3)
C6'-C5'- \mathbf{C}^{\prime} - ${ }^{\text {C3' }}$	-0.7 (5)
C3'-C4'-O4-C40	2.4 (4)
C5'-C4'-O4-C40	-176.8 (3)
$\mathrm{O} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	179.6 (3)
C5'-C4'- \mathbf{C}^{\prime} '- ${ }^{\prime} 2^{\prime}$	-1.3 (4)
C4'- $3^{\prime}{ }^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 20$	-177.7 (3)
C4'- $3^{\prime}{ }^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}$	2.8 (4)
C6'- ${ }^{\prime} 1^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 20$	178.2 (3)
C100-C1'-C2'-O20	0.0 (4)
C6'-C1'- $\mathbf{C}^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}$	-2.3 (4)
C100- $\mathrm{Cl}^{\prime}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3{ }^{\prime}$	179.5 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 20-\mathrm{H} 20 \cdots \mathrm{O} 1$	0.84	1.77	$2.515(3)$	147

supplementary materials

Fig. 1

